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Abstract

The paper is an invited presentation at the Sixth IMAC International
Symposium on Computer Methods for Partial Differential Equations, June 23-26,
1987, Lehigh University. It discusses computational complexity of various
versions of the finite element method In relation to the achieved accuracy of
the finite element solution.
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Computational aspects of the h, p and h-p

versions of the finite element method

Ivo Babulka 1"

Institute for Physical Science and Technology
University of Maryland, College Park, MD 20742

Terensio Scapolla (.)

Institute for Physical Science and Technology

University of Maryland, College Park, MD 20742
and

Istituto di Analisi Numerics del CNR, 27100 Pavia, Italy

1. Introduction very complex, hence we will consider only some aspects

of finite element method for linear problems. Finally we
There are many versions and forms of finite element will consider a benchmark problem and we will see that

methods implemented in the finite element codes. The the practical results are in good agreement with the ones
basic architectures of the standard finite element pro- based on the computational theoretical models.
grams are eseentially very similar. Once the class of
problems that can be solved has been selected (elastic-
ity, plates and shell problems, heat transfer etc.), one 2. The scheme of the finite element method
of the main features i the variational form given to the
problem (primary, mixed, hybrid etc.) together with the The finite element method consists of few basic
type of finite element used (conforming, non-conforming phases:
etc.).-

, e.Nowadays several hundred of finite element program (a) Topeogy
systems are available, covering a wide range of class By this we mean the mesh generation. The mesh
of problems. Despite the great number of codes it is has to respect the geometry of the domain under con-
very difficult to find comparison results between differ- sideration and the requirement that effective and accu-
ent programs. The main reason is due to the fact that rate solution will be obtained. The mesh generation is
the comparison is a very complex task involving a large a very laborious part of the method also when sophis-
number of different factors. The usual approach is to ticated mesh generators are available. Very often, es-
test different methods and codes on benchmark prob- pecialy in three dimensions, the mesh reflects only the
lems (see, e.g., MacNeal and Harder 1141, Robinson geometry.
and Blackham 120,211). Although this approach has ob-
viously various drawbacks, it gives good and concrete (b) Local stiffness matrices

data for an effective comparison. Of course additional The complexity of the computation of local stiffness
aspects like convergence, rate of convergence, effect of matrices depends on the degree of the elements and the
the computer technology etc., are emential as well. Dif- type of hardware used (sequential or parallel).
ferent simple model problems together with a theoretical Let us consider here computations of a C' quadrilat-
modeling are also very worthwhile. eral element of degree p for a two fields (elasticity in two

The goal of this note is to address some results al- dimensions) problem. Using hierarchical elements (see,
lowing basic essential comparison between finite element e.g., Now and BabaIkel4l, Szabo' 123j), an element of
methods. There are three major version of the finite eis- degree p has Q shape functions, where
ment method: the standard h - version, the p - version
and the h- p versoon. The p- and h- p versions are (1) Q , p=l

a recent development. In Szabo' [2S1, Gwo and BabsekI
1101, Su-i 1221 recent advances in the p- and h - p ver- Q = 2 1 4p + max(0, 2(p - 2)(p- 3)) p

sions are given. For a survey of the state of the art The second part in the formula for Q gives the number
see also Babouke 131. We will try to make some compar- of internal shape functions which are treated later by
isons between these three versions, focusing especially on condensation procedure.
their computational aspects. We will particularly an&- Proper programmming on a sequential machine can
lyse the relations between the accuracy of the error and be made so that 0(p') operations are needed for com-
the computational work. Of course any comparison is putation. An experimenetal program in the (normalised

(*) Work partially supported by the Office of Naval Research VAX) time units leads to the computational work for the

under Grant N-000I4-S&-K-0169 local stiffness matrices WL, , where

jil'la kW



5 We recall that in the case of uniform square mesh
25 the number N of degrees of freedom is the following:

Figure 1 shows, for different values of p, the time units (4) N 6(m + 1)' p = 1
needed for the computation of 25 stiffness matrices.

N =21(m + 1)2 + 2m(m + 1)(p - 1)

t- + in2 max(0, (p - 2)(p - 3))1, p > 1.
-4 2

64 - (d) Postproeessng
32 ' By this we mean computations of desired values,

_ error control, graphics etc. This phase is often computs-
tionally very expensive. Because the cost of this phase is

5- " nearly the same for al the versions of the finite element
94 method, we will not consider this phase.

/, We consider as total work of computation W only

2 3 4 5 676 the work needed for the phaes (b) and (c). We have

(5) W - in WL + W,

Sometimes different methods are compared with re-
(c) Assemlily and elimination spect to the number N of degrees of freedom instead of

The work needed for this phase depends on the computational work. Hence we define a correction coef-

topology and the degree of the elements. The pract.- W
* caIly mot complex topology in two dimensions is the =

came of the uniform square mesh. Assuming a decompo- Table 1 gives p for various m and p.
sition with ms elements, the experimental program in the
(normalised VAX) time units of the elimination methods
leads to the following expression for the computational W O P I

work We (in the range I <p !a_ 1< m1 <5 ): 01 U3 , " a 0

0 . 0 14 1 4 0

(3) W, = 2 + (0.0136 + 0.004 m') p' . ,

Figure 2 shows the experimental time (in VAX units) as '.
9 +t ( pi +t

a function ofp and m. LO0 0,,? 1,

5Of P 4 VALA (OF P it I P a

le O~ll O(]DN am CCF MJLT ,/1 IT6 'k , '25 -4ei 2- , , 0 o o ,
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126 .+ +. . .+ ,
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3 pies of comparisons of the method
2.

As we said before, comparison of methods and codes
is a very complex problem. It depends on many factors,
one important being the man power cost needed to op-

- erate the code in practical environment The goal of the
2 computation is to achieve the desired data in the range

2 3 5 of a given accuracy. We will try to aseess the various
M- versions of the finite element method and we will con-

Fig.2 centrate only on the energy norm error e ,* To get
reasonably valid conclusions we will use

"-- .-.--.- .. .- .-. ..* .-. ...- ,. .- ,. -.*. .



s- theoretical model analysis; This type of function f(k) expresses the came when the

b- benchmark example analysis. function a is uniformly unsmooth over the entire do-

The main idea of the theoretical model analysis is main or has singular behaviour in an -priori unknown
location.

to assume that the energy norm error can be given as an Another form we will consider is the cl of analytic

explicit function depending on both number and degree solutions. In this cae we will ssume

of elements. We suppose that

(6) 1101, t 9(m ,P) (10) (k) f k! d

where d > I (the coefficient d expresses the sise of the
where 0(m,p) is a known function. We will derive suit- natural domain of the analyticity).
able expressions for the function f(m,p) so that it has Assuming the computational work W given by (5)
the forms close as much as possible to the theoretical es- and the function *(k) by (9), we show in the figures
timates for various versions of the method. Then we will 3,4,5,6 the dependence of the accuracy of the error fliell
study the dependence between the error jjeljl and the on the computational work W (in log - log scale) for
computational work W. Although this approach has, of different values of k. and a = 1. The values shown are
course, various shortcomings, nevertheless it can lead to the minimal errors for integers k = 1,2,.,., ko - 1 (of
valuable conclusions. course also the error in the entire range for k could be

The benchmark example will be the 'classical" en- easily computed, but it would not change the conclu-
gineering problem of a simply supported rhombic plate. sions). In all thaw figures the lines corresponding to the
We selected to present only this benchmark problem be- values p - 1,2,..., 8 are reported. On each line different

cause it has different character (C' elements are used) values of m i 1,2,... are considered.
and our conclusions based on plane elasticity model com-
putations (C ° elements) ar still valid. Of course ad- ACCL NCY s. C S WuR L WOW

ditional informations and estimates could be here used .. ........
too. Nevertheless we will see that the results are in good ......
agreement with the conclusions based upon the theoret- , .. .

ical model for the plane elasticity. to.P.

4. Complexity of the finite element computation V .3

The effectiveness of the method depends on the class ... h
of problem characterizing the function f(m,p) in (6),
which is a form of an estimate.

a) TIe. qu.si uniform mesh ',A

Let a. be the exact solution of the given problem
and I be the error in the A - p version. Then in Babulka f

and Sari 16j the following estimate has been proved:

".' '+ "" Fig.3

(7) Hlls - C(k) llaoli ,j o nCu.*W .s. CIjj, Tf'l5.(L w .

where h is the mesh iss, i = min(p,k - 1), n is the
given domain, H* (fl) the usual Sobolev space and C(k) o
a constant independent of I and p but depending on k
and 1l. tn our cae wea aume that h = m- I' no '.

Usually the function a. can be imbedded in various
Sobolev spaces. Hence we will assume that 10

P-2

where 0(k) is an a-priori known function. We can a&-
sume that ?C 1 ,

(9) I(V) =C-

with a positive, which shows that °

aE E H" (l), c > 0, v . H (n) , Fig4

"-(p.
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1 Let us now consider a clans of problems where the
1W ' . solution is singular in a vertex of the domain. In this

can the solution has the leading singularity of the type

P.'...

I.where r >0, a >0 and~ isan analytic vector function
in S. Then n B*bsika and Suri 161 ithas been proved

that

(12) Hel = min (n "~

__________________________The figures 9,10,11 show the accuracy of the error against

C' computational work for different values of a.

Fig.6

Let us now consider the cas when 0(k) is given by
(10). The figure. 7 and 6 show the behaviour of the error AMWY CP'W'SAINk4 WPFI

against the computational work for two different values
of d. C
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,--where [a denotes the integer part of am. The figure 12

shows the error against the work when the relation (14)

... 
................... .....I •"

0 is used with a = 0.5.
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c) Conclusions

* A careful analysis of the figures previously shown
9.2 leads to the following conclusions:

P1- Only for very low required accuracy or very un-
smooth solutions (ko, a small) the lower order elements
are preferable, on a uniform mesh. However, this is not

o .. ......... . ..... ....... .. .... . .. • usually the practical cae.

ID 2- The increase of the quality of the solution from
top p = I to p = 2 is very significant and p = 2 gives some-

* 0.0, Fig.ll times reasonable errors for low but already acceptable

So far we have mentioned only decompositions of engineering accuracy.

the given domain with uniform mesh. If the solution is 3- It is safer to use elements of higher degree (3-5)

of the type (11) and an optimal mesh is used, then the then lower ones for the effective computation. The use of

error behaviour is close to the case of the smooth solution higher degree elements in general is more robust. Let us
previously described, remark that in the elasticity problem the locking effect

(for P = 0.5) is completely eliminated when p 2! 4 (see
b) The strongly refined mesh for the h - p version Scott and Vogelius [271). This is another reason to use

Here we consider the solution uo belonging to the p ? 3.
space B,(l) (see Goso and Babuska 111,121). In this 4- If the solution is smooth or the solution has sin-
case the following estimate holds for the error: gularities but the mesh is properly refined, higher order

elements are preferable except for very low desired accu-
(13) ells = C ezp(-b N ) racy.

The topology of the (strongly refined) mesh is equivalent 5- The most effective way is to combine the degree of

to a rectangle (not a square). Nevertheless we will use the elements with a properly designed mesh. Of course

our result for the square mesh topology (which leads to the effectiveness depends very much on the proper design

the rate ezp(-b NL-)). In this case the degree p of the of the mesh. For questions of this type we refer to Guo

elements that are used depends on m. We will use for and Babuaka [13, Rank and Babuhka 1181.

the error the relation which leads to the above estimate 6- A high practical accuracy can usually be obtained
and is used in [11,121: with the elements of degree p : 8 when reasonable mesh

is used in all practical cases.
(14) IIll. = exp(-ap) , p= [.Mli



5. A benchmark problem: tb, rhombic plate (b) The finite elements

Several finite elements for plate are known. We have
As we said in the introduction, the usual way to restricted our attention to conforming elements, that is

compare different finite element methods is to test them elements satysfying the C'-condition, allowing the dis-
on a benchmark problem, where the solution is in some crete approximation space to be included in the contin-
way explicitly known. In order to evaluate the effective- uous one. The main reason is that conforming elements
nm of the theoretical error analysis model previously have some good properties of monotonicity (i.e. for the
introduced several tests has been performed. In particu- energy) enabling an effective control of the error.However
lar we refer to Babulka and Suri [61 for various results in many codes non-conforming elements are used.
related to the solution of the elasticity problem of an The elements we have tested are the following:
L-shaped domain. However, we show that our conclu-
sions are useful for more general situations beyond the 1- reduced Hsieh-Clough-Tocher triangle (HCTR),
specific one from which it has been derived (of course a 2- assumed stress hybrid triangle (HYBR),
similar model could be made based on available results 3- Argyris triangle (ARGY).
for plate bending problems). Hence we have analyzed
another classical benchmark problem, the bending of The Fig.14 shows, with the usual convention for no-
a simply supported rhombic plate under normal loading, ation, the type of degrees of freedom associated with
to evaluate the generality of our approach. each type of element. For details we refer to [8] for

a) The rhombic (Kirchhoff) plate problem

The most severe test for plate elements is the so-
called Morley's skew plate (see Morley 115,161), which
is a uniformly loaded and simply supported plate of the
shape of an equilateral parallelogram (rhombus).
In Fig.13 a rhombic plate is shown together with a 2 x 2
mesh for triangular elements. IGTA

Fig.14

We only recall that the following abstract error es-
timates hold provided a sufficiently smoothness of the
solution:

Fig.13 Ilella < C h Ihulls

Because of the stress singularity at the obtuse cor- for both HCTR and HYBR elements,
net of tha plate the convergence of the finite element
solutions has been found to be extremely slow. The sin- hJell, : C h' 1lull.
gularity depends on the angle 6 and as 6 decreases the
singularity becomes stronger. Robinson [191 has com- for ARGY element.
piled the results of many finite element codes for this
problem. The results of most of the elemnts show a very
large error for the center deflection of the plate even when (c) The numerical results
very fine mesh is used. However, no indications are given Numerous tests have been performed for different
about the real cost of using each element to get a desired shapes of the plate and for different boundary conditions
accuracy. Our main goal in to test some elements on the Here we focus our attention on the energy error obtained
rhombic plate taking into account accuracy and compu- for various values of the angle 6. We have considered a
tational work. plate with the following data:

SP.S



side length a = 1.0 in, ,FNEtY ERROR ,.T. T!ME

thickness t = 0.01 in,
Young's modulus E = 30 x 10' Lb/in, b4s,5Q

Poisson's ratio V = 0.3 ................... .............
normal load p = 1.0 lb/in2 .

For the plate problem we have computed the (rela-
tive) energy error, defined in the following way: . .

l1,1a, = (ZN- E,°

where El, E 0 represent the exact and the computed
energy, respectively. The computation has been carried ...... 7 .....

out using routines of the code MODULEF (see 191) and
the final linear system has been solved by Cholesky pro-
cedure. The computation was performed on an Apollo
DN300 computer. We have used existing subroutines to to' IV

avoid any bias on the reached conclusions. t"* tm Fig.16

The Fig.15,16 show tae behaviour of the energy er-
ror against the total time of computation for different ACCURACY is. C0MPUTATIOAL WORK

values of the angle 6. As expected, the error increases as
the angle 6 decreases. However we note that in all the Ic ......::.................

situations the higher degree element ARGY gives bet-
ter performances over the lower degree elements HCTR
and ARGY. More important, if we compare these results
with the Fig.9,10,11 we see the agreement between our P - .

model and the concrete numerical results.
To better understand the equivalence we show in 0" .........

Fig.17,18 the lines corresponding to degrees p=1 (HCTR
and HYBR element) and p=4 (ARGY element) for values
of a=0.8 and a=0.2 based on computation using relation
(12) (in the same way as Fig.9,10,11 were computed).
These values of the parameter describing the singular-
ity are theoretically related to the values of 6=80 and le i .............................. ..... ...
6=30, respectively. The direct comparison (Fig.15 and
17; Fig.16 and 18) shows a good agreement between our
model and practical results. ... tL ,

So.s Fig.17

ENERGY ERROR vs. TOTRL T[E ACtRAY ,s. COMPUTATIONAL WORK

t........ .. . ..... ... . ... .......................

0.0 ."".. ............. .... .............

. . . . . .. ........

0.21' to,

total ti * for 0Fi.i5 q ,il riCELIA - 00 Fig.IS AL ., Fig.18



6. Conclusions tute for Physical Science and Technology, University of Mary-
land, 1986 (to appear on Math. Modeling Num. Anal.)

1- Models of computational complexity based on [7] Brezzi, F.; Marini, L.D.: On the numerical solution of plate
theoretical error estimates for typical classes of solutions bending problem by hybrid methods, RAIRO 9-113 (5-50) 1975
and measured computer timing of benchmark problems [8] Clough, R.W.; Tocher, J.L.: Finite element stiffness matrices
leads to reliable assesment and conclusions for computa- for analysis pf plates in bending, in Proceeding of the Conference
tional comparisons of the finite element methods, on Matrix Methods in Structural Mechanics, Wright Patterson

2- Higher order elements are preferable because they A.F.B. Ohio, 1965
usually need smaller computational effort for the same [9] George, P.L.; Vidrascu, M.: MODULEF: guide d'utilisation

et normes de programmation, Institut National d Recerche en
accuracy of error. Moreover, high degree elements are Informatique and Automatique, France, 1984
much more robust (e.g. also with respect to the locking 1101 Guo, B.Q.; Babuika, I.:. The theory and practice of the
problem). The less favourable effectiveness in compari- h-p version of the finite element method, presented at the 6-th
son with lower order elements in extreme situations is IMACS Congress, Lehigh University, June 23-26, 1987
significantly outweighed by very good performance in [11] Guo, B.Q.; Babulka, I.: The h - p version of the finite

normal situations, especially using a "reasonable" mesh. element method. Part 1: The basic approximation results,

3- The concrete conclusions previously listed down Comp. Mechanics, 1 (1986) 21-41

in section 4c) are valid for large classes of problems. 1121 Guo, B.Q.; Babulka, I.: The h - p version of the finite
element method. Part 2: General results and applications,

4- Our comparisons were based on the performance Comp. Mechanics, 1 (1986) 203-220
with respect to the energy norm. We expect the same 113] Guo, B.Q.; Babulka, L: The h - p version of the finite ele-
conclusions for other norms and performance measures merit method for domains with curved boundaries, Tech. Note
although a larger emphasis could be necessary on the BN-1054, Institute for Physical Science and Technology, Univer-
used mesh (e.g. dealing with the pollution problem; see sity of Maryland, 1986
Babujka and Oh [5]). [14] MacNeal, R.H.; Harder, ILL.: A proposed standard set of

5- We did not address the question of man power problems to test finite element accuracy, J. of Finite Elements

onof this type in industrial envi- in Analysis and Design, 1 (3-20) 1985
cost. For the comparison ht n is ra l ere [15] Morley, L.S.D.: Bending of a simply supported rhombic
ronment we refer to Barnhart and Heusemann [2] where plate under uniform normal loading, Quart. J. Mech. and Appl.
higher order elements were shown highly preferable. Math., 15 (413-426) 1962

6- We did not address here the question of the rela- [16] Morley, L.S.D.: Skew plates and structures, Pergamon
tion of the quality results assessment (see, e.g., Noor and Press, London, 1963
Babuaka [4]) to the degree of the elements. This field is [17] Pian, T.H.H.; Tong, P.: A variational principle and he
quite new for all methods. Nevertheless hierarchical in- convergence of a finite element method based on assumed stress

crease of p leads to a simple and effective error control distribution, Int. J. Solids and Structures, 5 (463-472) 1969
for all data of engineering interest based on various types 1181 Rank, E.; Babuila, I.: An expert system for the optimal
of extrapolation (see, e.g., 123,24,26). mesh design in the h - p version of the finite element method,
oo[Tech. Note BN-1053, Institute for Physical Science and Tech-

7- We did not address the effectiveness of the finite nology, University of Maryland, 1986
element treatment of various mathematical formulations [19] Robinson, J.: An evaluation of skew sensitivity of thir-
of the same problem (for example Kirchhoff and Mindlin- tythree plate bending elements in nineteen FEM systems,
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made in a forthcoming paper. [20] Robinson, J.; Blackham, S.: An evaluation of lower or-

der membranes as contained in MSC/NASTRAN, ASAS and
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The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

o To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

0 To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

o To provide a limited consulting service in all areas of numerical

mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington

*... Metropolitan area.

o To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

0 To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I. Babuska, Chairman,

Laboratory for Numerical Analysis, Institute for Physical Science and
*/ Technology, University of Maryland, College Park, Maryland 20742.
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